QUESTION BANK

Subject with Code: Fundamentals of Digital Computing Systems (20EC0401)
Year \& Sem: I-B.Tech \& II-Sem

Course \& Branch: B.Tech - ECE
Regulation: R20

UNIT -I

COMPUTERS AND SYSTEMS

1		Briefly explain the different elements that are made of a computer-based information system.	[L2][CO1]	[12M]
2	a	Distinguish between primary storage and secondary storage.	[L2][CO1]	[6M]
	b	List the uses of primary storage and secondary storage.	[L1][CO1]	[6M]
3	a	What are the major considerations and factors that would be important while buying a computer?	[L1][CO1]	[6M]
	b	Sketch the IPO model and describe its functional blocks.	[L3][CO2]	[6M]
4	a	List the components of a computer system.	[L1][CO1]	[4M]
	b	With the help of a neat block diagram, explain the hardware componentsof computer system.	[L2][CO1]	[8M]
5		Illustrate and describe the two major categories of software components of a computer system.	[L2][CO1]	[12M]
6	a	Briefly explain the communication components of a computer system.	[L2][CO1]	[6M]
	b	List the types of computers and write short notes on each computer.	[L1][CO1]	[6M]
7	a	Describe the features of IBM -Z series mainframe computers.	[L2][CO1]	[6M]
	b	Interpret the concept of virtualization and describe its importance.	[L2][CO3]	[6M]
8	a	Analyze why Protocols and standards are important features of networks.	[L4][CO3]	[6M]
	b	Describe the brief architectural history of a computer.	[L1][CO1]	[6M]
9	a	Briefly explain the computer hardware of a computer system.	[L2][CO1]	[6M]
	b	Explain the operating system in detail.	[L2][CO3]	[6M]
10	a	Interpret the following terms: (i) Computer network (ii) Internet	[L3][CO3]	[4M]
	b	Discuss the various types of network media, network hardware and protocols.	[L2][CO1]	[4M]
	c	List the applications of a computer network.	[L1][CO1]	[4M]

UNIT -II
 AN INTRODUCTION TO SYSTEM CONCEPTS AND SYSTEMS ARCHITECTURE

1	a	Explain the relationship among the following words: system, environment, boundary and interface with a neat sketch.	[L2][CO3]	[6M]
	b	With an example, discuss the relationship between a system and its environment.	[L2][CO3]	[6M]
2	a	Explain general concept of system with an example.	[L2][CO3]	[8M]
	b	Sketch the partial view of business application architecture.	[L3][CO3]	[4M]
3	a	Explain the top-down approach in IT system architecture.	[L2][CO3]	[6M]
	b	Discuss the importance of application architecture in IT system design.	[L2][CO3]	[6M]
4	a	Write short notes on distributed processing systems.	[L2][CO2]	[4M]
	b	Sketch the basic client-server architecture and explain briefly.	[L2][CO2]	[8M]
5	a	Describe the advantages of client-server computing with some exampl	[L2][CO3]	[6M]
	b	Explain the three tier database architecture with a neat diagram.	[L2][CO3]	[6M]
6	a	Write short notes on cloud computing.	[L2][CO2]	[4M]
	b	Classify the services provided by cloud computing and explain them briefly.	[L2][CO2]	[8M]
7	a	Sketch the comparison between cloud service levels and computer system layers.	[L2][CO2]	[4M]
	b	Explain the concept of peer-peer computing and its advantages and disadvantages compared with client-server computing.	[L2][CO3]	[8M]
8	a	Why web-based system architecture is a popular approach to many organizational systems? Explain with an example.	[L2][CO3]	[8M]
	b	Describe the principal responsibilities of a system architect.	[L2][CO2]	[4M]
9	a	What is the primary mission of Google?	[L1][CO3]	[4M]
	b	With the help of diagrams, explain how Google designed its IT system hardware architecture to achieve its mission.	[L2][CO 3]	[8M]
10	a	Explain the architecture of Google data center search application.	[L2][CO2]	[6M]
	b	Illustrate Facebook's application architecture and explain how it processes the user application requests.	[L2][CO3]	[6M]

1	a	Discuss various number systems of a computer.	[L2][CO4]	[8M]
	b	Tabulate the numbers up to 15 which can be represented in base-2, base-8, base-10 and base -16.	[L2][CO4]	[4M]
2	a	Some older computers use an 18 -bit word to store numbers. Calculate the decimal range for this word size.	[L3][CO4]	[3M]
	b	Calculate how many bits it will take to represent the decimal number $3,175,000$ and how many bytes will it take to store this number.	[L3][CO4]	[3M]
	c	Construct addition and multiplication tables for base 12 arithmetic. Use alphabetic characters to represent digits 10 and larger.	[L3][CO4]	[6M]
3	a	calculate the value for the following addition: $(25 \mathrm{~A} 84)_{12}+(70396)_{12}$	[L3][CO6]	[6M]
	b	calculate the value for thefollowing multiplication: $(2 \mathrm{~A} 6)_{12} \times(\mathrm{B} 1)_{12}$	[L3][CO6]	[6M]
4	a	Estimate the values after multiplying the following binary numbers: (i) $(1101)_{2}$ (ii) $(11011)_{2}$ $\times(101)_{2}$ $\times(1011)_{2}$	[L4][CO6]	[4M]
	b	Find the results after performing the following binary divisions: (i) $(1010001001)_{2}$ by $(110)_{2}$ (ii) $(11000000000)_{2}$ by $(1011)_{2}$	[L3][CO6]	[8M]
5	a	Find the result of the following binary additions: i) $(101101101)_{2}+(10011011)_{2}$ ii) $(110111111)_{2}+(110111111)_{2}$ iii) $(11010011)_{2}+(10001010)_{2}$ iv) $(1101)_{2}+(1010)_{2}+(111)_{2}+(101)_{2}$	[L3][CO6]	[6M]
	b	Convert the results obtained from (i), (ii), (iii) \& (iv) of 5(a) into Decimal and Hexadecimal numbers.	[L2][CO4]	[6M]
6	a	Convert the given decimal number (6026) ${ }_{10}$ into octal.	[L2][CO4]	[4M]
	b	Convert the given decimal number (6026) 10 $^{\text {into hexadecimal. }}$	[L2][CO4]	[4M]
	c	Find the decimal value of the following binary numbers (i) $(1100101.1)_{2}$ (ii) $(1110010.11)_{2}$ (iii) $(11100101.1)_{2}$	[L3][CO4]	[4M]
7	a	Convert the following numbers from decimal to binary and then to hexadecimal: (i) $(27.625)_{10}$ (ii) $(4192.37761)_{10}$	[L2][CO4]	[6M]
	b	Convert the following numbers from their given base to decimal: (i) $(0.1001001)_{2}$ (ii) (0.3A2) ${ }_{16}$ (iii) $(0.2 \mathrm{~A} 1)_{12}$	[L2][CO4]	[6M]
8	a	Using the division method, convert the following decimal numbers: (i) $(13750)_{10}$ to base 12 (ii) $(6026)_{10}$ to hexadecimal (iii) (3175) $)_{10}$ to base 5	[L2][CO4]	[6M]
	b	Convert the following numbers from their given base to decimal: (i) $(0.1001001)_{2}$ (ii) $(0.3 \mathrm{~A} 2)_{16}$ (iii) $(0.2 \mathrm{~A} 1)_{12}$	[L2][CO4]	[6M]
9	a	Convert the following hexadecimal numbers to binary: (i) $(4 \mathrm{~F} 6 \mathrm{~A})_{16}$ (ii) $(9902)_{16}$ (iii) $(\mathrm{A} 3 \mathrm{AB})_{16}$	[L2][CO4]	[6M]
	b	Convert the following binary numbers into hexadecimal: (i) $(101101110111010)_{2}$ (ii) $(1111111111110001)_{2}$ (iii) $(110001100011001)_{2}$	[L2][CO4]	[6M]
10	a	Using the multiplication method, convert the following numbers to decimal: (i) $(1100010100100001)_{2}$ (ii) $(\mathrm{C} 521)_{16}$ (iii) $(3 \mathrm{ADF})_{16}$ (iv) $(24556)_{7}$	[L2][CO4]	[8M]
	b	Convert (0.12201) $)_{3}$ to base 10.	[L2][CO4]	[2M]
		Convert (0.828125) 10 $^{\text {to base } 2 .}$	[L2][CO4]	[2M]

UNIT -IV
 DATA FORMATS

1	a	Summarize various types of common data that is represented in a computer.	[L2][CO5]	[6M]
	b	Briefly explain the three standards that are used in common for alphanumeric characters.	[L2][CO5]	[6M]
2	a	A secret message is transmitted from the other planet to earth in the form of binary and each binary code has a unique character. By using the table given below, analyze the given message and determine the secret code. Binary code: 11001110100000111111000000100110111111110111110000000100100	[L4][CO5]	[8M]
	b	Explain the PNG \& JPEG image formats.	[L2][CO5]	[4M]
3	a	Discuss the characteristics of a bitmap image.	[L2][CO5]	[4M]
	b	Why images must be stored and manipulated as bitmap images?	[L4][CO5]	[8M]
4	a	Define image metadata. Give at least three examples of metadata that would be required for a bitmap image.	[L2][CO5]	[6M]
	b	With a neat sketch, explain the bitmap image storing format GIF.	[L2][CO5]	[6M]
5		With an example, explain about the object image.	[L2][CO5]	[12M]
6		With a neat sketch, describe how an A-to-D converter converts audio data into binary data.	[L1][CO5]	[12M]
7		Describe the most important characteristics and features of the following audio file formats: (i) .MP3 (ii) .WAV	[L2][CO5]	[12M]
8	a	List the advantages of data compression.	[L1][CO5]	[4M]
	b	Distinguish lossless and lossy data compressions algorithms.	[L4][CO5]	[8M]
9	a	Define page description language and list various page description languages.	[L1][CO5]	[4M]
	b	List the five simple data types that are provided in most high-level programming languages and write a short note on each data type.	[L1][CO5]	[8M]
10		Explain pseudo code procedure that performs string conversion to number.	[L2][CO4]	[12M]

UNIT - V
 REPRESENTING NUMERICAL DATA

1	a	Calculate the value of largest unsigned integer that can be stored as a 16-bit number.	[L3][CO4]	[4M]
	b	Describe the unsigned binary and binary coded decimal representations with an example.	[L2][CO6]	[4M]
	c	Convert the decimal numbers, 24 and 37 into BCD and also calculate the sum of the two BCD numbers obtained.	[L2][CO6]	[4M]
2	a	Define 9's complement and 10's complement of a given number and explain the relation between them.	[L1][CO4]	[6M]
	b	Determine the result for the following decimal numbers by performing addition. Also convert each result obtained to five-digit 10 's complement form. (i) 24379 (ii) 24379 (iii) -24379 $+5098$ -5098 5098	[L3][CO4]	[6M]
3	a	Determine the 9's complement representation for the three-digit number -467.	3][CO4]]
	b	Explain the procedure for adding two numbers in 2's complement form.	2][CO6]]
	c	Define one's complement, two's complement form and explain the relation between them.	[L2][CO6]	[6M]
4	a	Define the overflow and carry conditions.	[L2][CO6]	[3M]
	b	Calculate the 16-bit 1's and 2's complements of the following binary numbers. (i) 10000 (ii) 100111100001001 (iii) 0100111000100100	[L3][CO6]	[6M]
	c	Convert +38 and -24 to 8 -bit 2 's complement form and perform addition operation between them.	[L2][CO4]	[3M]
5	a	Determine the 16-bit 2's complement binary representation for the decimal numbers, 2021 and -2021.	[L3][CO6]	[4M]
	b	Describe the exponential notation with an example.	[L2][CO4]	[8M]
6	a	Calculate the result by performing addition of the following two floating point numbers and round the result to five places of precision. i) 05199520 ii) 625.2035 iii) 1024.775 E 2 +04967850 $+25.7585$ $+512.225 \mathrm{E} 0$	[L4][CO4]	[6M]
	b	Calculate the result by performing subtraction of the following two floating point numbers and round the result to five places of precision. i) 05199520 ii) 625.2035 iii) 7024.775 E 2 -03967850 -25.7585 -512.225E0	[L3][CO4]	[6M]
7	a	Compute the floating-point representation for 0.0000019557.	[L3][CO4]	[4M]
	b	Compute division of the following two numbers, normalize the result obtained and round it to 3-bit. i) $04220000 / 02712500$ ii) 625.2 2035 / 25.7585 iii) $7024.775 \mathrm{E} 2 / 512.225 \mathrm{E} 0$	[L3][CO5]	[8M]
8	a	Represent the decimal number, 171.625 in IEEE 754 format.	[L2][CO4]	[3M]
	b	Convert the decimal number, 253.75 to binary floating point form.	[L2][CO6]	[3M]
	c	The IEEE provides a standard 32 -bit format for floating point numbers. The format for a number is specified as $\pm 1 . \mathrm{M} \times 2 \mathrm{E}-127$. Explain each part of this format.	[L2][CO4]	[6M]
9	a	Determine the result of multiplying two floating point numbers, normalize and round the result to 3 -digit. i) 05220000 ii) 625.2035 iii) 7024.775 E 2 $\times 04712500$ x25.7585 x512.225E0	[L3][CO4]	[8M]
	b	Illustrate the structure of Typical 32-bit \& 64-bit Floating Point Format.	[L2][CO4]	[4M]

$\mathbf{1 0}$	\mathbf{a}	Convert the decimal number, 253.75 to 32-bit IEEE 754 floating-point form.	$[\mathrm{L} 2][\mathrm{CO} 4]$	$[4 \mathrm{M}]$
	\mathbf{b}	Briefly explain about IEEE 754 Standard.	$[\mathrm{L} 2][\mathrm{CO} 4]$	$[4 \mathrm{M}]$
	\mathbf{c}	What are the programming considerations and explain.	$[\mathrm{L} 1][\mathrm{CO} 3]$	$[4 \mathrm{M}]$

Prepared by: Dr.R. Gomalavalli,Mrs J.Jhansi,Mrs.P.Poojitha

